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Allltnd-The problem of a torque applied suddenly to the surface of a flat aMular crack in an infinite
elastic body is considered. The sinauW solution is equivalent to that of the sudden appearance
of a c:rack in a body under torsion. Laplace and Hankel transforms are used to reduce the
problem to a pair of triple integral equations. The solution to the triple integral
equations is expressed in terms of a sinauW integral equation· of the lint kind with kernel
improved by means of a contour intepation on the Riemann surface. The sinplar stress distributions
near the c:rack tip are obCained in dosed form and the inftuences of the inertia. the ratio of the inner
radius to the outer one and their interactions upon the dynamic strell·intensity facton are shown
Jrllphically.

I. INTRODUCTION

The study of dynamic elasticity. which involves the transient response of a crack-like imper­
fections to impact loads. has attracted attention of scientists because of its increasing application
to fracture mechanics. At the crack, waves are reftected and refracted causing the local stress
to increase beyond its corresponding value under static loads of the same magnitude. This could
initiate the unstable motion of the crack and eventually the fracture of the structure. The
dynamic response of a crack under the action of impact loads has been treated by many authors
and many papers on the subject have been reviewed by the recent book of Sih[1]. However,
these solutions are mostly limited to 2-Di problems and few results on the 3-Di analysis have
been reported except the axisymmetric problems. The axisymmetric elastodynamic problem
involving a penny-shaped crack in an infinite medium under torsional load has been considered
by Sih and Embley(2). A frequently encountered crack shape in embedded cracks is the
banana-shaped crack which has become practically famous with a noted catastrophic fracture (3).
The stress-intensity factor at the critical region, i.e. at the midpoints of the waist of the crack.
can be estimated by the stress-intensity factor of a ftat annular crack. The problem of this type
is a three-part mixed boundary value problem and is reduced to a solution of triple integral
equations.

In this investigation, the impact response of a ftat annular crack in an infinite solid
undergoing the action of twisting is considered. Laplace and Hankel transforms are applied and
mixed boundary value problem is formulated in the Laplace transform domain. The solution to
the mixed boundary value problem is expressed in terms of a singular integral equation of the
first kind. The convergence of the kernel has been improved by means of a tontour integration
on the Riemann surface. The solution of the singular integral equation is given in the form of
the product of the series of Chebyshev polynomials of the first kind and their weight functions,
and is obtained by solving a system of linear algebraic equations for the determination of
unknown coefficients. A numerical Laplace inversion technique developed in (4) is used to
obtain the solution in physical plane. By making the inner radius of the crack tend to zero, we
solve the transient problem for a penny-shaped crack. It should be noted that we can't obtain
the case of the penny-shaped crack by simply taking the inner radius to be zero. This case will
be discussed in the Appendix. The value of the stress-intensity factor so derived agrees with the
one by Sih and Embley(2). The results can be used for the sudden appearance of a crack in a
stressed medium under torque and for a transient torsional wave impinging on the ftat annular
crack. Results are presented by the dynamic stress-intensity factor and are shown graphically to
demonstrate the inftuence of the time and geometric parameters.
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2. STATEMENT OF THE PROBLEM
Consider an infinite homogeneous isotropic elastic solids that contains a flat annular crack of

inner and outer radii a, b lying on the plane z = 0 in a cylindrical polar coordinate system
(r, 8, z), as shown in Fig. 1. Let the components of the displacement in the r, 8, zdirections be given
by Un U, and U2' For the torsional shear problem, u, and Uz vanish everywhere and u, is a function
of r, z and time t only:

u, =Uz =0, u, = u,(r, z, t).

The corresponding stress field consists of two shear stresses

(1" =p,r(u,!r)"

(1)

(2)

while all other components vanish. In eqns (2), p, stands for the shear modulas of elasticity
of the solid medium and a comma denotes partial differentiation with respect to the coordinates.

Substituting eqns (2) into the equation of motion of elasticity in the 8-direction renders

(u,., +u,!r)" +U'.zz =uu/d (3)

where the shear wave velocity C2 is defined by ci = p,/p with p being the mass density of the
material. Equation (3) is to be solved subjected to zero initial conditions and the fonowing
boundary and symmetry conditions:

(1z,(r, O, t) =- 1'o(r/b)H(t); a < r < b

u,(r, 0, t) =0; 0EO r EO a, b EO r

(4)

(5)

where 1'0 is a constant with the dimension of stress and H(t) is Heaviside unit step function.
Away from the crack, the tangential displacement is required to vanish, i.e. u....Oas (r+
Z2)112 ... 00• Because of the symmetry condition across the plane Z =0 it is possible to consider
the problem for the upper half space, z ;;t O.

3. METHOD OF SOLUTION

Define a Laplace transform pair by the equations

f*(P) =rf(t) exp (- pt) dt

f(t) =-2
1·1 rep) exp (pt) dp
'11'1 s,

(6)

(7)

where the second integral is integrated over the Bromwich path. The application of eqn (6) to (3)
yields

u:' n + ,,:',Ir- u~/r+u:' zz = (PIC2)2",

Fig. 1. An infinite elastic solid containing a flat annular crack.

(8)
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in which u1 =u: (r, z, pl. A Hankel transform is applied on eqn (8) and the result is

"~=raA(a,p)exp[-y(a)z}lt(ar)da

where J. is the first-order Bessel function of the first kind and

In the Laplace transform plane, eqns (4) and (5) become

ut,(r, 0, p) = - 'To(r/bp); a < r < b

"'(r, O,p) =O;OEO rEO a, b EO r

1105

(9)

(10)

(11)

Making use of eqns (2), (6), (7) and (9), eqns (10) and (11) render a pair of triple integral
equations:

L- a 2A(a,p)J.(ar)da= L- ag(a,p)A(a,p)lt(ar)da+(rolp.p)(r/b);a<r<b (12)

L- aA(a, p )l.(ar) da =0; 0.. r" a, b EO r (13)

where

g(a, p) =a - y(a).

If one defines

r(u1/ r)" =tp(r. p); z =0, a< r < b =0; Z =0,0 s r s a, b s r

then with the help of the equation (9), A(a,p) is determined as

aA(a.p)=- f IIp(t,p)J2(at)dl

(14)

(15)

(16)

where J2 is the second order Bessel function of the first kind. If we now substitute eqn (16) into
eqn (12), after some manipulations, we havt

where

f tlp(I, p) [Ro(r, t) +R1(r, t)) dt "" - ('1'01p.p)(r/b); a < r < b

421
=;? [KCt! r) - E(t/r» +;: .?"=? E(I/ r); 1< r

4 2 [ 1
2

]= 'lTrt [K(r/t) - E(r/t)] + 'lTrt tr=? E(r/I) - K(r/I) ; 1> r

(17)

(18)

(19)
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Here, K and E are the complete elliptic integrals of the first and second kind, respectively.
From eqn (13) and the definition (16) it is clear that the integral equation must be solved under
the following single-valuedness condition:

fbI
G t'P(t,p)dt=O. (20)

The integral in (19) exists for all r, t in [a, bland can be converted into integral with fast rate
of convergence. To evaluate the integral in (19), we consider the contour integrals:

in which

ICI =1. L('Y(k), k)H~1) (kt) JI(kr) dk; r < tTCI

10 =fo L('Y(k), k)H~2) (kt) JI(kr) dk; r < t

(21)

(22)

In eqns (21), the contours Cl, C2 are defined in Fig. 2 and H~I), H~2) are respectively, the second
order Hankel functions of the first and second kind. The integrals in (21) satisfy Jordan's
Lemma on the infinite quarter circles, so that,

+ (0 {ia _ p(a)}H~I)(iat)JI(iar)i da +lit
)Plc2

+ fO {- ia - p(a)}H~2)( - iat) JI( - iar)( - i) da +12E
plc2

(23)

1mk

Fig. 2. Contours of integration for integrals in eqns (2\).
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from the upper and lower quarter-circles at the point k =0 and are given by

1107

(24)

Since lei +10 =0, we get the relation,/l(ar)

Lor. {a - 'Y(a )}J2(al)JI(ar) da

=1 [1p/c2
aK2(al)/.(ar)da +f. ... {a - p'(a)}K2(al)Mar)da]-(Plc2)rlI2; r< I.

11' 0 P/C2

(25)

The case for r> I can be also found. Therefore RI(r, I) can be finally written as

(26)

where lit 12, KI and K2 represent the usual modified Bessel functions. The kernels R\(r, I) given
in the form of eqns (26) will allow their numerical evaluation with good accuracy.

The kernel Ro(r, I) has Cauchy-type singularities and logarithmic singularities which are
assumed to be separated. We thus bave

where

1 [ r 3 /2(1 - r)I ]Ro(r,I)=;r; t=r-i log b-o +Mo(r,t) (27)

Mo(r, t) ={t ~ r - 2(llr) }E(rll) + t ~ r {E(rlt) -1}+ 2(tlr)K(rll) + ~ log 1
2lt .=-;)1; t < r

= {7~?-2}E(tlr) + t ~ r {(rlt)E(tlr)-1}+4K(tlr)+~ log /2f.=-;)/; t > r. (28)

For the sake of convenience, we perform the following non-dimensionalization:

1 1
R =rib =2(l - Oo)S +2(1 +00)

ao= alb

P = bplc2

~(T, P) = q>(I, p)/(ToIp.p)T.

(29)
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With the help of eqns (28) and (29), the revised singular integral equation of the first kind (17)
and single-valuedness condition (20) are shown as

1 fl [1 3(1- a ) ]- -- 4R 0 10gIT-sl+K(s,T) 41(T,P)dT=-11t _I T-S

fl 41(T, P) dT = 0

(30)

(31)

in which the Fredholm kernel K(s, T) is bounded in closed interval -1 < s, T < I and is given by

I-ao
k(s, T) =2R [Mo(r, t) + PMI(S, T)] (32)

MI(s, T) = - 2P2
[ f aK2(aPT)II(aPR)da +f' {a - (a2 -1)I1:}K2(aPT)II(aPR)da ]

+1tPR/ T2; s < T

Thus the problem is reduced to the solution of the singular integral equation (30) under the
additional condition (31).

The solution of the set of integral equations (30) and (31) as given in [5], is

(34)

where T..(T) are Chebyshev polynomials of the first kind and A.. are unknown constants
obtained from the following infinite system of linear algebraic equations:

..
~ (8k11 +akll + f3k11)A.. =- 81k-
.. -I

In eqns (35), 8k11 is Kronecker delta and

a =3U - ao) fl 1. T. (s) U. _ (s)(1 - S2)1/2 ds
kII 2n1t _I R" " I

(35)

(36)

(37)

where UI<-\ (s) are Chebyshev polynomials of the second kind. All the integrals in eqns (36) and
(37) are Gauss-Chebyshev type and may easily be evaluated by using the proper quadrature
formulas [6].

4. TRANSIENT STRESS DISTRIBUTION AROUND THE CRACK

From the fracture mechanics point of view, the desired information is the singular stresses
near the crack tip. Instead of inverting the complete stress field back to the physical plane, only
the portion of the asymptotic stress field near the crack periphery needs to be inverted. The
integral expression for the Laplace transform of the stresses can be obtained by substituting
eqn (9) into eqns (2). Noting that the integrandsare finite and continuous for any given values
of a, the divergence of the integral near the crack tip must be due to the behaviour of the
integrand as the integration variable a ~CO. Making use of eqns (16), (29) and (34), the singular
portion of the stress field in the transformed plane may be obtained by expanding the integral
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expressions asymptotically for large.value of a and then carrying out the integration. Applying
the theorem(7) on the behaviour of Cauchy integral near the ends of the path of integration and
then the Laplace inversion theorem, the local stress field .near the crack is obtained as:

K3.CQ K (T) .
0',.,(r, Z, T) - (2p.) cos (9./2) - (2:. )112 sm (9,,/2)

( T K3·(fJ· /2 K3.(T) I I
0'" r, Z, ) - (2p.) sm (9. )+ (2p.)'12 cos(9b12) (38)

where K3• and K3b stand for the dynamic stress-intensity factors at the inner and the outer tips
of the crack, respectively, and are defined by

(39)

In eqns (38), T =c111b is the normalized time, and P., 9. and P., 9. are the polar coordinates
defined as

(40)

The equivalence of inverting only the near field solution to that of the entire stress field for
obtaining the dynamic stress-intensity factor has been established in (8) by using a modi~ed

Cagniard-De Hoop method. Note that the same angular distribution and inverse square root
singularity are recovered for the dynamic problem.

The infinite system of simultaneous equations (35) may be solved numerically to determine
the coefficients AlI(n = 1,2, ...). Once this is done, the integrals in eqns (39) must be determined
in order to evaluate the stress-intensity factor. In this paper, numerical method is employed for
the Laplace inversion. The formula(4) used is as follows:

(41)

(42)

where 8 is a parameter to determine the time scale, the xiU = I, ..., N) are the zeros of the
shifted Legendre polynomials PH (1- 2x) and the Wi are a set of weights which are given by

Wi =_! (I PH(! -2x) dx.
2Jo (x - xi)(PN(1- 2x)].r-J'J

In eqn (42), PH (x) are the Legendre polynomials of order N and PH (1-2x) is used for dPN
(1- 2x)/d(1- 2x).

S. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results have been calculated for the dynamic stress-intensity factor as a function
of time for various ratios of ao. Note that letting P ...Oin eqns (35) yields the correlpolldina
solution for the static case. As T... CTJ and ao"'O, the dynamic stress-intensity factor K3b at the
outer tip of the crack tends to the static solution K31 =(4/317') 'Tobin for the penny-shaped crack
of radius b. The dynamic stress-intensity factors are normalized by the static solution K31• In
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the calculated results, it is found that the value of N needed to achieve a particular level of
accuracy is strongly dependent ao and the truncation after N =16, 12, 10, 8 and 6 gives
practically adequate results at any desired transform parameter P for ao =0.1, OJ, O.,s, 0.7 and
0.9, respectively.

The normalized dynamic stress-intensity factor K],,/K3• at the inner tip of the crack is
plotted in Fig. 3 as a function of the time variable T for various values of ao ratio. The same
kind of results for K],JK3• at the outer tip of the crack is shown in Fig. 4. Results in Figs. 3and
4 are obtained for seven integral values of P from I to 7, the parameter N =7 of the numerical
Laplace inversion and the parameters a=0.5,0.6,0.7,0.8,0.9 and 1.0 of the time scale. The
dynamic stress-intensity factor increases quickly with time, reaching a peak and then decrease
in magnitude oscillating around its corresponding static value. The same trend has been also
observed for the case of tbe penny-shaped crack[2]. The dynamic stress-intensity factor
K],JK3• for ao =0.1 is almost coincident with tbe result of the penny-shaped crack in an infinite
body. The solution obtained in the preceding sections tends to that of the penny-shaped crack as
ao-'O, but we can't obtain the case of tbe penny-shaped crack by simply taking ao to be zero.
But we can obtain this case by extending the definitions of the unknown function and the
kernels [9], which is given in the Appendix. The numerical result for ao =0given in the Appendix
coincides tbe result by Sih and Embley[2]. The peak value of K3,,/K3I occurs later in time as ao
is decreased. It is observed that the combined impact and geometry effects can increase the peak
values of tbe stress-intensity factor K3,,/K3• by approximate 2 and 5% for ao =OJ, 0.5 and can
decrease them by approximate 31, 7and 42% for ao =0.1, 0.7, 0.9. respectively. And also the peak
value of K],JK3• appears to be bigher and occurs later in time as ao is decreased. For ao =0.1, OJ
and 0.5, the combined impact and geometry effects can increase tbe peak values of the
stress-intensity factor K],JK]. by approximate 20, 19 and 12%. For ao =0.7 and 0.9, the opposite
effects are observed and the effects can decrease them by approximate 3and 41%. However, by

Fig. 3. Variation of dynamic stress.intensity factor at the inner tip of the crack with time.

00 Q5 1.0
T

15 20

Fig. 4. Variation of dynamic stress·intensity factor at the outer tip of the crack with time.
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comparing the corresponding stati~ ~tress-intensity factorsK~K31 =0.400,0.658,0.759,0.727 and
0.493 and K3JK31 =0.999,0.985,0.931,0.800and 0.506 for ao =OJ, OJ, 0.5, 0.7 and 0.9 with Figs. 3
and 4, it is observed that the inertiaeffects can increase the peak values of the stress-intensity factor
atthe inner tip byapproximate73,55,39,29and 17%and thepeakvaluesof thestress-intensityfactor
at the outer tip by approximate 20, 20, 20, 21 and 17%.respectively. For small ao, the intertia effects
for the stress-intensityfactor at the inner tip become large.The inertiaeffects for the stress-intensity
factor at the outer tip don't almost depend on ao. In any case, the inertia effects increase the peak
values of the stress-intensityfactor and must be accounted for. The maximum values ofK3,}K31 for
ao =0.1,OJ,0.5 0.7 and 0.9 are produced almostatthe same time with those of K3,}K31t respectively.
Since the values of K3,}K31 for ao =0.1.OJ.0.5, and 0.9are always larger than those ofK~K31t the
annular crack transforms into an external crack. After that the material will be broken into two
pieces.

In conclusion, the impact response of a Bat annular crack in an infinite solid is obtained. The
results are expressed in terms of the dynamic stress-intensity factor. Depending on the radius
ratio ao, the peak values of the dynamic stress-intensity factor are always higher than the static
values and are produced at time much sooner than that as found in [2] for the case of the
penny-shaped crack.
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APPENDIX
TlOIlSitnl strus-inlllllity laclor lor a pIIlny-shaped crack

We will consider the solution for a penny-shaped crack whicb was solved by Sih and Embley[2] by transformiq the
dual inte...al equations into the Fredholm integral equation of the second kind. The penny-shaped crack solution can be
obtained from the annular crack solution by extendina the definitions of the unknown function and the kernels into - b < r,
t <0 in an appropriate way(9]. The nature of axial symmetry of the problem suaaests that /p(I, p) =-/p( - t,p)(9].
Referrilll to (91, if we extend the definitions of the function ",(t, p) and the kernels from 0< r, t <b into - b< r, I <b, and if
we define the dimensionless variables

s = rib, T= db

(17) and (20) may be expressed as

1 fl [I 3 ]- ---210gIT-sl+Ko(s,1') 4Io(T,P)d1'=-1
1t _I T- S $

where

410(1', P) =tp{/, p)/(,o/p.p),

Ko(s,,) = Lr/..s, T) +11'1 LI(s,,)

(43)

(44)

(4.5)

(46)

(47)
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To solve (44). we let

Y. SRINDO

Lj.1.,,) =-~E(I"VI,D +(1IVlrl>E(I"VI,D-l
In, "-1

3+211011"- 1/: /,,1 >III

L1(1.,,)- ~P2[f aIitrPl"DK1(trPl,Dda

+f {a -(a2-1)ll2)liPaI1'DK1(Pallllda ]: 11'1< III

=-~ p2 [ L1
aKiaPI1'DII(aPjlD da

+f {a - (a2-l)II2)KiPal1'DII(PaIID da ] +PI,VI1'P: 11'1> III

(48)

(49)

(SO)

where B. are unknown constants. Since 4\(1'. P) is an odd function, the condition (45) is satisfied. From (44) and (SO). we
obtain

where

JJIaIO"~ f. U21_2(1)(1-1~1/2dl fl T2c_I(1')KO<I.1')~d1'.

The stress-intensity factor is found to be

Kn(T) .. lim {2(r-b)p12 O',,(r.O. n,....

(Sl)

(S2)

(S3)

(S4)


